Contributions to a Mathematical Theory of Complexity

L. H. Harper

University of California at Riverside

J. E. Savage

Brown University

This article is another in a series that attempts to define precisely and investigate
the “computational complexity” of a general class of problems which includes
many problems that occur in the DSN control center. Specific DSN control center
questions that a theory of computational complexity will help define and answer
include the problem of the optimum mix of core, disk, and drum storage in the con-
trol center, and the intelligent allocation of computational resources to flight proj-
ects of differing complexity in such a way that simultaneous real-time computing
commitments can be made. This article shows that there exists such a theory which
is capable of providing important information about the true complexity of several

classes of non-trivial problems.

l. Introduction

The Deep Space Network depends critically upon
computation: computation of trajectories, decoding of
telemetry, processing of ranging data, etc. For every com-
putation we make, however, we should also ask, “Could
this be done more efficiently?” Sometimes we can answer
affirmatively by producing a better algorithm; rarely can
we assert that no improvement is possible. It is the object
of this article to present the elements of a theory of com-
plexity which may lead to a satisfactory answer to this
question in many cases. In a previous article (Ref. 1), we
began the study of complexity; this article continues the
work.

Specific DSN control center questions which a theory
of computational complexity will help define and answer
include the problem of the optimum mix of core, disk,
and drum storage in the control center, and the intelligent

JPL TECHNICAL REPORT 32-1526, VOL. V

allocation of computational resources to flight projects of
differing complexity, in such a way that simultaneous real-
time computing commitments can be made. This article
shows that there exists such a theory which is capable
of providing important information about the true com-
plexity of several classes of non-trivial problems.

In Section II, we define the computational complexity
and the computation time of any Boolean function of N
variables, and contrast a theorem of Lupanov which says
that “most” such functions have complexity near 2¥, with
a simple lemma which shows that any function which
really depends on N variables has complexity at least
p (N — 1) for a certain constant p. In Section III we pre-
sent a condition which guarantees that a function is rather
complex, sometimes as complex as N?/log N.

Finally, in Section IV, we apply the results of the pre-
vious sections to two famous search problems of com-

91

binatorial mathematics: the “marriage problem” and the
“traveling salesman’s problem.” We establish a lower
bound of 0(n®) on the combinational complexity (with
logic fan-out one) for the marriage problem. The classical
“alternating paths” technique gives an upper bound of
0(n*) for the combinational complexity (with unlimited
fan-out) for this problem. Hopefully, more work will elim-
inate the fan-out restrictions and close the gaps between
upper and lower bounds.

Il. Algorithms and Complexity Measures

The complexity of various functions will be measured
under the assumption that it is computed by a “straight-
line” algorithm, which is defined below.

Definition. Let Q be a finite set of Boolean functions
hi:(Z)—> 3,
where =, = {0, 1} and r; = r, the fan-in of Q. Let
T=3,U{x,%, ' ** ,%xy)

be the data set where x; is a Boolean variable. Then, a
K-step straight-line algorithm with data set T is a K-tuple
B = (B, B: - - -, Bx), where at the kth step By€eT or
B = (his ki, » - - ,k,,) for some h; €, where 1=k, <k
for 1=0=r; If BieT, we associate with it the function
Br, which is either a constant or a variable x;. If 8, =
(hi;kyy - - - ,kri), we associate with it the recursively de-
fined function By = h; (Bx, Br,, = * * » ,Ek”). The algorithm
is said to compute the functions B, Bum, * * - s B, if
Bmy> Bmy, =, Bm, are steps of the algorithm. The set of
primitives Q is said to be complete if every Boolean
function

fr(S:)¥—> =,

can be computed by some straight-line algorithm over T.

Associated with an algorithm g is a graph of the algo-
rithm. This is a set of vertices that are in a 1-1 corre-
spondence with the steps of 8 and a set of directed edges.
A step B €T corresponds to a vertex which has no edges
directed into it while a step By = (hi; ky, - - - ,k.;) has a
corresponding vertex with ordered edges directed into it
from nodes corresponding to By, * - -, Br, - A graph is

said to have fan-out of s if the maximum number of edges
directed away from any vertex is s. This is also said to be
the fan-out of the algorithm. If By €T, its corresponding

92

node is called a source vertex. The graph of an algorithm
is also known as the circuit diagram of a combinational
machine.

A cost, P,, is associated with the use of each primitive
operation h; € 2 and the cost of an algorithm is the sum of
the costs of each of its primitive operations. Then, the
combinational complexity with fan-out s of the Boolean
functions fy,f,, - - - ,f. with respect to the set of primi-
tives @, C, (fi, f2» - * * , fu), is the smallest cost of any
straight-line algorithm over @ which computes these
functions and which has fan-out of at most s. Then, it is
clearly true that

Coo(fly . ’fL)éCS(fI: e afb)

écs—l(fl, c . ,fL)éCI(fh e ,fL)

The two measures of greatest interest in this article are
C., the combinational complexity with unlimited fan-out,
and C,, the combinational complexity with fan-out of 1.
It should be noted that an algorithm with fan-out 1 has
no memory in the sense that any intermediate functions
which are used more than once must be recomputed.

Lupanov (Refs. 2 and 3) has shown that every Boolean
function f of N variables can be realized with

ColZp2(1+9

C.()Zp ey 1+ 9

for 0 < € and N = N*(¢), where

p = max
ri>=2 Ti — 1

These bounds are sharp in the sense that for large N,
almost all Boolean functions have C,, (f) and C, (f) which
are larger than p (2¥/N) (1 — €) and p(2¥/log, N) (1 — €),
respectively.

Let the length of an algorithm be the number of edges
on a longest directed path of its graph. Then, another
important measure of complexity is the computation time
of Boolean functions f,, - - - ,f, denoted D (f,, - * - ,fu),
which is defined as the minimal length of a straight-line

algorithm over @ which computes f;, - * - ,f.. We have
immediately that
D(fh T afL) = max D(f!)

1=i=L

JPL TECHNICAL REPORT 32-1526, VOL. V

It can be shown, using the disjunctive normal form decom-
position of a Boolean function, that every Boolean func-
tion of N variable can be realized with D (f) =N — 1
+ [log. N']. Also, for large N, almost all of these functions
has D (f) which is bounded below by a function linear
in N.

The following lemma establishes a relation between the
measures D and C,.

Lemwma 1. Let f be a Boolean function and let f be realized
by a straight-line algorithm with fan-in r. Then,

D(f)é[log, [(r —1) (;,T(f) + 1]]

where P, is the maximum cost P; for h; € Q.

Proof. Consider an algorithm which realizes f with com-
putation time D (f). Such an algorithm can be assumed
to have fan-out of 1 and to have an associated graph
which is a tree since only one vertex of the graph corre-
sponds to the function f which is to be computed. Then,
the graph of such an algorithm cannot have more than
(r°P —1)/(r — 1) non-source vertices and this quantity
must be at least as large as C, (f)/Pya.. The inequality then
follows.

Q.E.D.

A test is now developed which when satisfied provides
a linear lower bound to combinational complexity.

LemMa 2. Let f be a Boolean function which is dependent
on N variables. Then,

C.H=p(N-1), 1=k=w
where

i

p = min
=2 Ti 1

and r; is the number of inputs on which h; depends.

Proof. Let B be an optimal algorithm of fan-out s which
computes f. Then, the graph of the algorithm has exactly
one vertex with no edges directed away from it with all
remaining vertices having at least one edge directed away
from them. Thus, the number of edges directed away from
vertices is at least

N—1+3M,
where M, is the number of occurrences of h; since each of

JPL TECHNICAL REPORT 32-1526, VOL. V

the N variables on which f depends are associated with
source vertices. But there are at most

2 M;r;
edges directed into vertices so
N-1=SM(n—1)

If i, minimizes P;/(r; — 1), then

PV =1)=) Mo (= 1)

= Z M.P; = C, (f)

which is the desired result.
Q.E.D.

Any function satisfying this test has a combinational
complexity which grows at least linearly with the number
of variables on which it depends. For s> 1, this is
the strongest known lower bound. For s = 1, Specker’s
Theorem (Ref. 4) states conditions under which C, (f)
must grow faster than linearly in N, N being the number
of variables. In the next section we present a technique
which we call Neciporuk’s test for generating lower
bounds to C,(f). These bounds can grow as fast as
N?/log N.

A few remarks are in order concerning straight-line
algorithms. These algorithms contain no loops nor do they
permit conditional branching. For this reason they in
general cannot compute functions as quickly as algorithms
which have these features. Nevertheless, results of Savage
(Ref. 5) show that if A is an autonomous sequential ma-
chine which allows loops and conditional branches and
computes f, then the inequality C, (f) = (C* (A) + 5n,) T
must be satisfied, where T is the maximum number of
cycles executed by A on any point in the domain f, C* (A)
is the combinational complexity of the next state and out-
put function of A, and n, is the number of binary digits
required to specify the output of A. We can assert, for
example, that if T is much smaller than C,, (f), then the
complexity of the machine A must be large.

lll. Neciporuk’s Test

In this section we develop a lower bound to C, (f) for
a Boolean function of N variables. This bound was ab-

93

stracted from Neciporuk’s demonstration (Ref. 6) that for
a certain function (actually a sequence of functions) C; (f)
grows as fast as N?/log N, N being the number of varia-
bles on which f depends.

Given a Boolean function f of N variables x,, - - -, xy,
let
fzil' a8y
Ay by | By By,

denote the functior® of m = N variables derived from f by
setting x;, to the constant ax. The number of distinct such
functions is bounded by 22" and 2¥-".

THEOREM. Suppose f is a Boolean function dependent on
N variables, N being divisible by m. If the variables can
be partitioned into N/m blocks B; containing m elements
each, in such a way that there are F distinct functions

f zifB;

aj

rj€B;

for each i, then

C.(h > ﬁ (N /m)log. F

where r = maxr;.

Proof.

(i} Adding functional elements to the basis Q cannot
increase C, (f). The element we shall add has three inputs,
x, 5, and y, and computes the function f (x,7,y) = »x Dy,
@ denoting EXCLUSIVE OR. Let P; for this element be
2p so that P;/(k; — 1) = p and this parameter is not lowered
for @/, the enlarged basis. Then C, (f) = C’ (f).

(ii) Let B be an optimal straight-line algorithm over ’,
with fan-out one, which computes f. Let ¢; be the number
of inputs of variables from block B, and t = 3t;, the total
number of inputs. By the linear inequality of Lemma 2,

Ci(f)=p(—1)~pt
(iii) If i, is the index for which
t;, = m}'n t;

then t = (N/m)t; .

94

(iv) Consider 8 as computing the function

fz:,v;(B,-o

G.i,

z;i€B;,

by setting the x; ¢ B; to constants (call them free con-
stants). B may be far from optimal for this task, however,
and the following operations might improve it: If any
subtree of the graph of 8 has only constant or free constant
inputs, replace that tree by a node representing a new free
constant. If any subtree has exactly one variable input,
then replace it by the element computing nx @ y, with x
being the variable input and 7, y free constants. The de-
sirable property of this element is that

fm
can be any function of x, depending on the values of a,
and @,. Call the algorithm derived from 8 by the above
transformations 8,. 8, will still compute any function

f«’ﬂfﬂf-‘o
aj z;€By

if the proper values of its free constants are given. Also,
it still has ¢; variable inputs.

(v) B has no elements without at least one variable in-
put and no chains of elements with only one variable input
to the chain. If we overlook the elements with only one
variable input, then all other elements have at least two
variable inputs and a simple induction shows that ¢, is at
least one more than the number of such elements. If a, is
the number of elements with one variable input, a. is the
number of elements with at least two variable inputs,
and C, is the total number of functional elements, then
C, =a, + a;, and from the above t;,=a, + 1. Finally,
each element with at least two variable inputs and the in-
puts of x;€B; can be followed by at most one element
with a single variable input and so a, + t;,=a,. There-
fore, C, < 3t;,.

(vi) By another application of Lemma 2, this time with
P; = 1 for all functional elements,

where F, is the number of free constants in 8.

(vii) Recalling that 8, computes at least F distinct func-
tions depending on the choice of values for free constants,
F,=log,F.

JPL TECHNICAL REPORT 32-1526, VOL. V

Now, putting all of these inequalities together,

C.(f)y=Ci(f) ()
> pt (i)
> o (N/m)t;, (iii)
> p(N/m)(C,/3) v)
> (p/3) (N/m) (Fo/r — 1) (vi)
= [p/3(r — 1)](N/m)log. F (vii)

As an example of how Neciporuk’s test works, we can
exhibit Neciporuk’s function: Given a positive integer N,
let m = 2 4 log, N and let X be an [N/m] X m matrix of
independent Boolean variables, x;;. Also let ¢ be an
[N/m] X m matrix of distinct m-vectors of 0’s and 1’s,
each containing at least three 1’s. Then,

Cn(X)ZZx”- Z

if k
(k#1)

I %

Tijy — 1

where 3 means repeated application of “exclusive or”
(sum mod 2). The blocks of the partition in Neciporuk’s
test will be the rows of X. Fixing i, if ax;, 5= a,;, for some

h, =1, then

O/l Xnj h#l

O/l Tpj, h2i
anj Tiry T, m dhj Tiv, -, 8,

since one of them contains the term

and the other does not. Therefore,

N2
log, N

C.() > 5

the strongest lower bound possible from Neciporuk’s test.
On the other hand the definition of (1, above, gives

N2 N2 N2
Cl(Cn)SmPe + ?P,:—P.

showing that Neciporuk’s test is fairly accurate.

IV. The Marriage Problem and the Traveling
Salesman’s Problem

These problems are a familiar part of combinatorial
theory [see Berge (Ref. 7), Gomory (Ref. 8), Harper—Rota

JPL TECHNICAL REPORT 32-1526, VOL. V

(Ref. 9), Mirsky—Perfect (Ref. 10), and Lin (Ref. 11)].
However, since some variation is possible, let us begin
with precise definitions: Let X be an arbitrary real n X n
matrix and

m(X) =maxX+P
4

where P ranges over all n X n permutation matrices and
X-P= 2 XijPij
1,7

Then find a P such that X-P = m (X). This is generally
called the marriage problem, but, for reasons which will
become apparent, we shall be more interested in the
closely related problem of finding a simple algorithm to
compute m (X).

The marriage problem is so called because one may
imagine a population of n boys and n girls with x;; being
the happiness generated if boy i marries girl j. The prob-
lem then is to arrange the n marriages so that the total
happiness is maximized.

The value of m at X may always be computed by evalu-
ating X * P for each permutation matrix P and comparing.
But this requires n! separate operations which quickly
surpasses the capabilities of even our largest and fastest
machines. There are more efficient algorithms known,
however. As we show in Section V, the classical alternat-
ing paths algorithm requires on the order of n* elementary
operations. Hopcroft and Karp have in private communi-
cations indicated that this figure may be lowered to n*° if
conditional branch operations are allowed.

The traveling salesman’s problem, with the same nota-
tion, is to find a cyclic permutation matrix, P, minimizing
X+ P. As before we shall investigate algorithms for com-
puting

t(X)= min X-P

Pcyclic

x;; may now be thought of as the cost of traveling from
city i to city § and a traveling salesman of course would
wish to make a complete tour at minimal total cost. Again
the trivial solution would entail evaluating X + P over all
(n — 1)! cyclic permutation matrices (n! ~ Y 2=n (n/e)*
by Sterling’s formula). Bellman [see Gomory (Ref. 5)] has
given a dynamic program which reduces this to approxi-
mately n? - 2" operations, still exponentially increasing. We
shall pass over the clever work on partial solutions and
solutions for special cases by saying that no one has yet to

95

our knowledge found an algorithm for computing ¢ (X)
which does a number of computations growing like n* for

fixed k.

In any case the traveling salesman’s problem is at least
as complex (modulo a small constant) as the marriage
problem since the latter can be embedded in the former.
If all the entries of X are positive, and we may assume this
since adding a constant to all entries of X does not signifi-
cantly alter the problem, then

n;(X} = —t<g _§)

where the argument of £ is 2n X 2n. Any lower bound we
obtain for the complexity of m then gives a lower bound
of the same order for the complexity of t.

In order to apply Neciporuks test to the marriage
problem, we restrict the x;; to values 0 and 1 and let
m, (X) =m (X) (mod 2). Clearly, neither of these transfor-
mations would significantly increase the complexity of
computing any function, and one may argue that in fact
the essential complexity of the marriage problem is re-
tained in the Boolean function m, (X).

Now X is a matrix of N = n? Boolean variables, so let
m=nand Bx = {x;;:1=4, j=n, i=j + K (mod n)},
K=0,1, - - - ,n— 1. The By’s partition X and any By
may be mapped onto any other by row and column per-
mutations which do not effect m (X). F is then the number
of distinct functions

m, i j¢fBo

Qij

Z; j€By

where

BOZ {xii’i:15 T 9n}

We wish to find a good lower bound on the number of
distinct functions

m z‘i;,iijl
0 @i T11, * 7 5 Pan

There are 27" such functions and we shall show that at
least 2"*/+ of them are distinct if n is even. This is estab-
lished by the following claim: If n is even, then the
functions

Zij, 125
[2%]

m,

P11y ¢ 0 4y Tn

for which a;; = 0 unless i << n/2 < { are all distinct.

96

Proof of claim. Suppose a;; and a}; (i #%j) determine two
such functions and that for

n <
.. - To
20, Jos to =2
aiojo =0
and
'4 —
aiojo =1
Then,
m”""“jl =n—2
aij Z11, * ¢+ ¢ 5 Tan
at the point
1,if &g, fo
xi’t = - . . .
0,if i = i, or f,
and
Tijyi#] = n —
m a’i;‘ 211, * ¢ 0 5 Tnn n]‘
at the same point. Therefore,
Tij,i#] z;;,i;&jl
m, aij T11, © * ¢ 3 Tna #mo aiy T11y v 0 v s Tun

Thus, we have:

Tueorem. If X is an n X n matrix of Boolean variables,

m(X) =maxX+P
P

P ranging over all permutation matrices, and m, (X)=
m (X) (mod 2), then

pn’
Clm) 2 56—

Since m,(X) is dependent on all n® variables of X,
Lemma 2 shows that C,(my)=>p(n* — 1). Thus, the
Neciporuk test provides a distinct improvement on this
bound when s =1. Lemma 1 can be used with either
bound to C, (m,) to lower bound the computation time
D (m,). The bound provided by Lemma 2 shows that
D (m,) must grow as 2 log, n while that of the theorem
shows that D (m,) must grow as 3 log, n, which is a small
improvement.

To date we have been unsuccessful in generating upper
bounds to C, (m,) which are algebraic in n or upper
bounds to D, (m,), which grow less rapidly than n?. We
now state a straight-line algorithm of fan-out s =n + 1

JPL TECHNICAL REPORT 32-1526, VOL. V

which implements the “alternating path” solution to the
marriage problem [Berge (Ref. 7)]. This algorithm has
fan-in of r = 2 and uses the primitive operations of AND,
OR, EXCLUSIVE OR (modulo 2 addition), and NEGA-
TION, denoted ., +,6D,” , respectively. The variables
of X are denoted by x;;, 1 =14, j =< n and the intermediate
variables u; (r, k), v} (r, k), v} (r,k), 1 <i=n, 1=r=k=n;
0y (1K), 0} (1, k), 07 (1, K), 1= =, 1 =1 =k =n; i, (k)
1=i 4, k=n, and 0; (k), 1 =4 k=n are used in the
description of the algorithm. If any of these intermedi-
ate variables are used with values for their indices which
are outside the stated ranges, they are assumed to have
value 0.

The intermediate functions computed by the algorithm
follow:

0y (k) = 3z (ui (1 k) + w3 (1, K))

i=1

i (r, k) = z yis (k= 1)+v; (r — 1,k), forr>=2
010 =03 (K- (2 7 k= 1) (30,)
vj(r,k) = 0; (k) * (v; (r,k) Dv; (r — 1,k))
+ zy”(— 1)t (r+ LK)
ui (r, k) = (é v x“) cu; (r, k)
. (2 o (r, k))
ACES PR RANS

e S u;(r+1,k)-u;(r,k>>

+ (Yii (k

m, (X) = 2‘; vii (n)

where X and 3 denote the OR and EXCLUSIVE OR,
respectively, of more than 2 terms. If P_, P, P, and P, are
the costs of the NEGATION, AND, OR, and EXCLU-

JPL TECHNICAL REPORT 32-1526, VOL. V

SIVE OR operations, then the cost of this algorithm is

o=(Frgrm)r)

Tn* 3n® n?
J— 3 . 2 _—
+<2 n 3n +n>P++<2 +2 I)P@

Since this algorithm has fan-out of s = n + 1, we have

Co (mo) = Cpyy (mo) =C,

and this bound grows as n* for large n.

V. Conclusion

We have distilled on these pages the main thrust and
concrete results which grew out of discussions between
the two authors. Side issues and philosophy have been
avoided even though they were an integral part of the
development of our thoughts. We should like to state here,
however, our conviction that combinational complexity
(particularly with unlimited fan-out) is a fundamental
concept in the study of combinatorial optimization prob-
lems. Questions such as those at the beginning of Section I
assume a precise meaning in these terms and can be
treated rationally. The old bugaboos about trade-offs be-
tween computing time, memory (random access, tape,
multiple tape, etc.), and other machine characteristics are
resolved. Definitive statements may even be made about
machines capable of looping and conditional branch oper-
ations. The key to these applications of combinational
complexity is the ability of combinational machines (or
equivalently, straight-line algorithms) to model the com-
ponents and operations of all other digital machines. For
details the reader is referred to the papers of Savage
(Ref. 5) on combinational complexity (also see Ref. 1).

The results of this article are mainly interesting in that
they suggest avenues of further research and we should
like to point out those which in our opinion are the most
promising: (1) To what other “natural” functions can
Neciporuk’s test be applied? (2) One of the continuing
paradoxes of this subject is that according to Lupanov
almost all functions of N variables have

2N

Cz(f)’zpm

and yet Neciporuk’s function N with

97

is the world’s champion among those explicitly given. Can
Neciporuk’s technique be generalized to give stronger
lower bounds, for instance C, (f) = NX, for all K=1?

Interesting candidates for large complexity are not lack-
ing. Besides the traveling salesman’s function, we have the
closely related combinatorial coding function [see Harper
(Ref. 12)], and many functions from graph theory such as
the chromatic number, x¢. If G is a graph whose incidence
matrix is symmetric n X n matrix of 0’s and 1’s (so N =
n(n + 1)/2), then y¢ is the minimum number of colors
which can be used to color the vertices of G so that no two

neighboring vertices have the same color (see Ref. 7).
Another candidate which we cannot resist mentioning is
the complexity function itself. For any Boolean function f
of n variables, there are 2" points in the domain. If these
points are ordered in their natural binary order, say, then
any function of n variables is equivalent to a binary se-
quence of length 2". Cy (f) can then be looked upon as a
function of N = 2" variables (f representing a point in the
domain). Thus, we can inquire about the complexity of
complexity and it seems reasonable to attribute the para-
doxes in our theory to the fact that complexity is most
likely a very complex function.

References

1. Savage, J. E., “Digital Telemetry and Command: A Collection of Results on
Computational Complexity,” in The Deep Space Network, Space Programs
Summary 37-65, Vol. 11, pp. 42-47. Jet Propulsion Laboratory, Pasadena, Calif.,
Sept. 30, 1970.

2. Lupanov, O. B., “On a Method of Machine Synthesis,” Izvestia B.Y.Z., Radio-
fizika, Vol. 1, pp. 120-140, 1959.

3. Lupanov, O. B., “On the Difficulty of Realizing Functions of Logical Algebra
with Formulas,” Sb. Problemi Kibernetiki, Fitzmatgiz, Vol. 3, pp. 61-80, 1960.

4, Hodes, L., and Specker, E., “Lengths of Formulas and Elimination of Quan-
tifiers,” in Contributions to Mathematical Logic, pp. 175-188. Edited by
K. Schutte. North Holland, Amsterdam, 1968.

5. Savage, J. E., Computational Work and Time on Finite Machines, 1971 (to be
published).

6. Neciporuk, E. E., “A Boolean Function,” Soviet Math-7, Doklady 7, pp. 999~
1000, 1966.

7. Berge, C., The Theory of Graphs and Its Applications. John Wiley & Sons, Inc.,
New York, 1964.

8. Gomory, R. E., “The Traveling Salesman Problem,” in Proceedings of the IBM
Scientific Computing Symposium on Combinatorial Problems, pp. 93-121. IBM,
White Plains, New York, 1966.

9. Harper, L. H., and Rota, G-C., “Matching Theory, An Introduction,” in
Advances in Probability Theory, Vol. 1, pp. 172-215. Marcel Dekker, New York,
1971.

10. Mirsky, L., and Perfect, H., “Systems of Representatives,” J]. Mathematical
Analysis and Applications, Vol. 15, No. 3, pp. 520-568, Sept. 1966.

11. Lin, S., “Computer Solutions of the Traveling Salesman Problem,” Bell System
Tech. ., Vol. 44, pp. 2245-2269, 1965.

12. Harper, L. H., “The Combinatorial Coding Problem,” in Proceedings of the
Second Chapel Hill Conference on Combinatorial Mathematics and Its Appli-
cations, Chapel Hill, North Carolina, pp. 252-260, 1970.

98 JPL TECHNICAL REPORT 32-1526, VOL. V

